Distributed Systems
Principles and Paradigms

Maarten van Steen

VU Amsterdam, Dept. Computer Science
Room R4.20, steen@cs.vu.nl

Chapter 02: Architectures

Version: February 21, 2011

vrije Universiteit amsterdam .ﬁ)

Contents

Chapter

01:

Introduction

02:

Architectures

03:

Processes

04:

Communication

05:

Naming

06:

Synchronization

07:

Consistency & Replication

08:

Fault Tolerance

09:

Security

10:

Distributed Object-Based Systems

11:

Distributed File Systems

12:

Distributed Web-Based Systems

13:

Distributed Coordination-Based Systems

Architectures

Architectures

@ Architectural styles

@ Software architectures

@ Architectures versus middleware

@ Self-management in distributed systems

@

N
&

Architectures

Architectural styles

Basic idea

Organize into logically different components, and distribute those

components over the various machines.

Architectures 2.1 Architectural styles

Layer N-1

Request
flow

Method call

Response
flow

]

(@)

(b)
(a) Layered style is used for client-server system
(b) Object-based style for distributed object systems.

Architectural Styles

Observation

Decoupling processes in space (“anonymous”) and also time
(“asynchronous”) has led to alternative styles.

‘ Component ‘ ‘ Component ‘

‘ Component ‘
Event delivery

‘ Component ‘

Data delivery

Publish

(@)

(b)

(a) Publish/subscribe [decoupled in space]
(b) Shared dataspace [decoupled in space and time]

Architectures 2.2 System Architectures

Centralized Architectures

Basic Client-Server Model
Characteristics:

@ There are processes offering services (servers)

@ There are processes that use services (clients)

@ Clients and servers can be on different machines

@ Clients follow request/reply model wrt to using services

Shared (persistent) data space

Publish

a

. Wait for result
Client

Request

Server -------------

Provide service

&

22 System Avhitectures 22 System Achitectures
Application Layering

Traditional three-layered view

@ User-interface layer contains units for an application’s user

interface

@ Processing layer contains the functions of an application, i.e.

without specific data

@ Data layer contains the data that a client wants to manipulate

through the application components

Observation

This layering is found in many distributed information systems, using

traditional database technology and accompanying applications.

~

)

a
4
)

22 System Avhitectures 22 System Achitectures
Application Layering

User-interface
User interface level
1~

HTML page

containing list

Keyword expression
HTML
generator

Processing

Ranked list level

Query
generator

of page titles

Ranking

Database queries algorithm

Web page titles
with meta-information
Database Data level
with Web pages

8/25 8/25
Multi-Tiered Architectures
Single-tiered: dumb terminal/mainframe configuration
Two-tiered: client/single server configuration
Three-tiered: each layer on separate machine
Traditional two-tiered configurations:
Client machine
User |nlerfﬁqg ‘ User |nterface‘ User interface User interface User interface
Applical\o/n“ Application Application
7-“»7“"$“”- N e Database
\gér interface
Application Application WA—ppIicat\on >
Database Database Database ‘ Database ‘ [) Database ‘
Server machine
(a) (b) (©) (d) (e)
9/25 9/25

2:2 System Architectures 22 System Archiectures
Decentralized Architectures

Observation

In the last couple of years we have been seeing a tremendous growth

in peer-to-peer systems.

@ Structured P2P: nodes are organized following a specific
distributed data structure

@ Unstructured P2P: nodes have randomly selected neighbors

@ Hybrid P2P: some nodes are appointed special functions in a
well-organized fashion

Note

In virtually all cases, we are dealing with overlay networks: data is

routed over connections setup between the nodes (cf. application-level

multicasting)

10/25

22 3ystem Arhitectures 22 System Avchiectures
Structured P2P Systems

Basic idea

Organize the nodes in a structured overlay network such as a logical
ring, and make specific nodes responsible for services based only on

their ID.

L Actual node

{13,14,15} {0,1}

Note
The system provides an operation
(89101112} 234 LOOKUP(key) that will efficiently
Associated route the lookup request to the

data keys

associated node.

{5,6,7}

s Nod

11/25

22 System Arhiectures 22 System Avchiectures
Structured P2P Systems

Other example

Organize nodes in a d-dimensional space and let every node take the

responsibility for data in a specific region. When a node joins = split a
region.

Keys associated with
node at (0.6,0.7)

0,1) | @1)
\ (09.0.9) (0.9,0.9)
. .
0208) 0208) [
©807) 0697
Actual node (0.9,06) (0.9,0.6)
] .
(0.2,0.45)
(0.2,0.3)
0
0.7,02) (0.7,02)
0 (0.2,0.15) .

0,0) (1,0)
(b)

12/25

22 8ystem Achictures 22 System Avhitctures
Unstructured P2P Systems

Observation

Many unstructured P2P systems attempt to maintain a random graph. J

Basic principle

Each node is required to contact a randomly selected other node:

@ Let each peer maintain a partial view of the network, consisting of ¢

other nodes

@ Each node P periodically selects a node Q from its partial view

@ P and Q exchange information and exchange members from their

respective partial views

Note

It turns out that, depending on the exchange, randomness, but also

robustness of the network can be maintained.

13/25

Arc

ectures 2.2 System Architectures 2.2 System Architectures
Topology Management of Overlay Networks

Basic idea

Distinguish two layers: (1) maintain random partial views in lowest layer;

(2) be selective on who you keep in higher-layer partial view.

Protocol for | _—7
Structured specific —— Links to topology-
specific other nodes

overlay overlay Q:

Random peer

Protocol for

Random

overlay randomized

view

,,4 Links to randomly
| ——
e

chosen other nodes

Note

Lower layer feeds upper layer with random nodes; upper layer is selective
when it comes to keeping references.

14/25

22 System Arhiectures 22 System Avchiectures
Topology Management of Overlay Networks

Constructing a torus

Consider a N x N grid. Keep only references to nearest neighbors:

| (a1,a2) — (b1, b2) [|= di + a2

di =min{N —|a; - bj,|a; — b;[}

Time

22 System Archiectures
Superpeers

Observation

Sometimes it helps to select a few nodes to do specific work:
superpeer.

Examples

Regular peer @ Peers maintaining an

index (for search)

@ Peers monitoring the
state of the network

@ Peers being able to setup
connections

Superpeer

Superpeer
network

22 System Archiectures
Hybrid Architectures: Client-server combined with P2P

Example

Edge-server architectures, which are often used for Content Delivery
Networks

Architectures

2.2 System Architectures

Hybrid Architectures: C/S with P2P — BitTorrent

Client node
K out of N nodes
Lookup(F) Node 1
|

A BitTorrent .torrent file List of nodes Node 2

Web page Ref. to for F Ref. to storing F

file tracker

Web server server File server Tracker

Node N

Basic idea

Once a node has identified where to download a file from, it joins a
swarm of downloaders who in parallel get file chunks from the source,
but also distribute these chunks amongst each other.

18/25

17/25

18

25

233 Arhitectures versus Middeviare 2:3 Architectures versus Middieware
Architectures versus Middleware

Problem

In many cases, distributed systems/applications are developed

according to a specific architectural style. The chosen style may not be

optimal in all cases = need to (dynamically) adapt the behavior of the

middleware.

Interceptors

Intercept the usual flow of control when invoking a remote object.

19/25 19/25
Client application
Intercepted call
B.do_something(value)
Application stub
Request-level interceptor ﬁ Nonintercepted call
\
invoke(B, &do_something, value)
’—gbjecl middleware ‘l—‘
Message-level interceptor
v
send([B, "do_something", value])
’—‘;ocal os ‘l—‘
To object B
20/25 20/25
Architectures 2.3 Architectures versus Middleware 2.3 Architectures versus Middleware

Adaptive Middleware

Separation of concerns: Try to separate extra functionalities and later

weave them together into a single implementation = only toy
examples so far.

Computational reflection: Let a program inspect itself at runtime and

adapt/change its settings dynamically if necessary = mostly at
language level and applicability unclear.

Component-based design: Organize a distributed application through

components that can be dynamically replaced when needed =

highly complex, also many intercomponent dependencies.

Fundamental question

Do we need adaptive software at all, or is the issue adaptive systems?

21/25 21/25

2.4 Seftmanagement n Distibuted Systems 24 Seftmanagement n Distibuted Systems
Self-managing Distributed Systems

Observation

Distinction between system and software architectures blurs when

automatic adaptivity needs to be taken into account:

Self-configuration

Self-managing

Self-healing

Self-optimizing

Self-*

Warning

There is a lot of hype going on in this field of autonomic computing.

22/25

22/25
Feedback Control Model
Observation
" .
In many cases, self-* systems are organized as a feedback control
system.
Uncontrollable parameters (disturbance / noise)
Initial configuration Corrections Observed output
Core of distributed system
+-
+-
o
H— Reference input -
Adjustment Metric
measures l estimation
Adjustment triggers Measured output
23/25 23/25

Example: Globule

Globule

Collaborative CDN that analyzes traces to decide where replicas of

Web content should be placed. Decisions are driven by a general cost
model:

cost = (Wy x my)+ (Wa X Ma) + -+ -+ (Wn x Mp)

24/25

Architectures 2.4 Self-management in Distributed Systems 2.4 Self-management in Distributed Systems
Example: Globule

> Enterprise network

<Z
b HIT

@ Globule origin server collects traces and does what-if analysis by

checking what would have happened if page P would have been

placed at edge server S.

@ Many strategies are evaluated, and the best one is chosen.

25/25 25/25

